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Abstract

The Gradient-Modulated Adiabatic Excitation (GMAX) method is characterized by the use of adiabatic pulses with main ap-

plications on volume localization in spectroscopy and slice selection in MRI. Its use derives from the interesting nodal point

magnetization profile induced throughout the sample. Nevertheless, the interpretation on such behavior for the magnetization has

been of qualitative purpose only, using the adiabatic condition as a starting point. Here, we present discrete spatial analytic so-

lutions, starting from the solution in terms of the hypergeometric functions for sech and tanh pulses. From these discrete solutions, it

is possible to infer analytically the characteristic behavior of transverse magnetization, on the purpose to obtain greater control of

the magnetization from parameters of the sequence that carry physical interpretation.

� 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

Slice selection and volume localization are matters of

extensive study since the early days of MRI and MRS.

They are both examples of the use of static magnetic

field gradients to produce a dispersion in the magneti-
zation spectral density. Then, with the use of convenient

RF pulses a spatially well-defined magnetization profile

is obtained. This picture is somewhat different when

non-static magnetic field gradients are applied, and even

more curious when the RF pulses are adiabatic.

The behavior of adiabatic pulses, as well as their use

in experiments where RF amplitude non-homogeneity is

present has been thoroughly discussed in the literature
[1–4]. Amongst the sequences that use such pulses, we

find GMAX (Gradient-Modulated Adiabatic Excita-

tion) [5,6] as a sequence that presents great advantages

in plane selection and volume localization of the sample.

It consists basically of the conjoined use of the same

modulation function f ðtÞ for the RF frequency, xðtÞ,
and for the frequency associated to the selection gradi-

ent, xGðx; tÞ ¼ cBGðx; tÞ,
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xðtÞ ¼ �x0 � pf ðtÞ;
xGðx; tÞ ¼ qxf ðtÞ;

ð1Þ

in which p and q are their respective amplitudes, x is the

direction of the gradient, and x0 ¼ cB0.
Therefore, in the reference frame rotating with xðtÞ,

we have for the frequency offset along the z-direction:

Xðx; tÞ ¼ ½x0 þ xGðx; tÞ� þ xðtÞ ¼ f ðtÞðqx� pÞ: ð2Þ
From Eq. (2) we see that X has a linear dependence in
space, in the x-direction. So, if we use for f ðtÞ, and for
the transverse field component B1ðtÞ (RF amplitude),
functions that satisfy the adiabaticity criterion and the

boundary conditions in t ¼ �1 and t ¼ 0 (see Fig. 1),
we will find the transverse magnetization in the x-di-

rection, in t ¼ 0, according to Fig. 2a. This is a very
interesting magnetization profile, since controlling the

amplitude q of xGðx; tÞ and p of xðtÞ we can choose the
inversion point or spatial node xi ¼ p=q. Therefore, if we
displace xi of any amount Dx and flip the signal of p or q,
the magnetization will result according to Fig. 2b.

Adding the two images, we have Fig. 2c, which results in

the selection of a slice of the sample. The representation

depicted above illustrates the use of the adiabatic half

passage, hereafter called GMAX method, as a building

block of a slice selection scheme, also called GMAX
sequence by their idealizers. This sequence was chosen
reserved.
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Fig. 2. (a) The magnetization induced along the x-direction with the

GMAX methodology, where xi is the nodal point. (b) The magneti-
zation of the same sample, after parameter changes. Notice the dis-

placement of the nodal point and the inversion of the transverse

magnetization sign. (c) The sum of the two magnetizations results in

the slice selection of the sample.

Fig. 1. Initial and final conditions that must be satisfied by the longi-

tudinal and transverse magnetic field components, on top and below,

respectively. The pulse must be adiabatic.
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for historical reasons to illustrate this work since it was

the first proposed use for the GMAX method, although

not widely held due to the need of multiple excitations.

Adiabatic excitation of any arbitrary nutation angle can

be achieved in a single scan using the BISS-8 [7] meth-
odology, also based on the same building blocks of the

GMAX method, which therefore could benefit from the

use of the results obtained in this work.

Although it is easy to understand how the transverse

magnetization is induced along x, it may not be so clear

how it behaves at the node in xi. At this position the
longitudinal component of the field is canceled and no

longitudinal modulation is present. As a consequence a
doubt arises if the magnetization follows or not the

adiabatic behavior at this special node. The node xi has
however a simpler description since at this point, in the

RF rotating frame, the effective field has only the

transverse component along x : ~BBðxi; tÞ ¼ B1ðtÞîi. For a
constant direction field, it is known that the magneti-

zation will evolve while keeping a constant angle with

the field direction. This can be easily verified by exam-
ining the Bloch equation without relaxation as in below.

d

dt
îi 	 ~MMðxi; tÞ
h i

¼ îi 	 d
~MMðxi; tÞ
dt

¼ îi 	 ~MMðxi; tÞ
h


 cB1ðtÞ̂ii
i
¼ 0: ð3Þ

So, the magnetization at xi will be restricted to the yz-
plane contributing with a null value for the x-compo-
nent. The conclusion is that the behavior at the node

satisfies the most common definition of adiabaticity,

since that the constant angle between the magnetiza-

tion and the field in the RF frame is what characterizes
this behavior [1]. It lacks however, completion as a



J. Teles, A. Tann�uus / Journal of Magnetic Resonance 163 (2003) 133–138 135
definition of adiabaticity in its broadest sense given
that this concept is dependent on a comparison be-

tween rates of change of the direction of the effective

field and the inverse of the relaxation parameters [1].

Another important observation is that the GMAX

method is also B1 insensitive at the node, since a null
value for the magnetization component along the ef-

fective field in the RF frame is expected for any B1
amplitude.
The procedure discussed above takes in account a

qualitative description based on the assumption that

the adiabatic condition is thoroughly satisfied. In fact

the expected magnetization of Fig. 2 is observed ex-

perimentally as shown by Johnson et al. [5], using

NOM [8] optimized adiabatic pulses. Nevertheless, it is

important to have some sort of analytical description,

which could give details of the magnetization profile.
In the following section, we describe the system dy-

namics using the spinor formalism, which, along with

the use of sech and tanh pulses, results in the hyper-

geometric function. This description is similar to that

followed by Hioe [9] and Tann�uus and Garwood [10], in
which the hypergeometric function gives the exact so-

lution for the magnetization. We noticed, however,

that at certain discrete positions in space, the hyper-
geometric function reduces to polynomials. These

could be used as a simpler way to describe the mag-

netization behavior for any point in time, for the spe-

cific positions along x.
2. Theoretical development

Previous works [11,12] have demonstrated the effi-

ciency of describing the magnetization in terms of spi-

nors. Firstly, we will describe the magnetization as

function of the spin system at a reference frame where

the z component of the field vanishes. This choice will

show itself a convenient way to obtain the z magneti-

zation component. As this z component is the same in

any reference frame where the z-axis coincide, we will
change to the frame rotating with the RF frequency xðtÞ
and there obtain using the Bloch equations the two

other components, My and Mx, as a function of the

previously obtained Mz.

Given the eigenvectors of the z projection of the an-

gular momentum operator for a particle of spin 1/2,

jWþi, and jW�i, we then write the generic state of the
state vector as a function of these components,

jWi ¼ ujWþi þ vjW�i: ð4Þ
Considering that the spins are isolated (no relaxation
effects), the system dynamics will be described by the

Schr€oodinger equation with the Zeeman Hamiltonian:

i�h
o

ot
~WW ¼ �~ll 	~BBtot~WW; ð5Þ
where ~WW ¼ u
v

� �
and ~ll ¼ c~SS. ~SS is the spin angular mo-

mentum written in terms of the Pauli matrix base,

~SS ¼ �h
2

0 1

1 0

� �
îi

�
þ 0 �i

i 0

� �
ĵjþ 1 0

0 �1

� �
k̂k
�
:

The total magnetic field, in the laboratory reference

frame, can be written as a function of the longitudinal

BzðtÞ and transverse B1ðtÞ amplitudes:
~BBtotðtÞ ¼ B1ðtÞ îi cosUðtÞ

h
þ ĵj sinUðtÞ

i
þ BzðtÞk̂k: ð6Þ

Now we rewrite Eq. (5) in the rotating frame with fre-

quency �cBzðtÞ. To accomplish this it is sufficient to do
the following transformation in the state vector:

jW0i ¼ eði=�hÞhðtÞSz jWi; ð7Þ
where Sz is the third component of the Pauli matrix and
hðtÞ is the angle of rotation, which we have chosen to be
hðtÞ ¼ �c

R
BzðtÞdt. With this transformation we have

the new state vector components, U and V, related with
the old ones:

U ¼ e�ði=2Þc
R

BzðtÞ dtu;

V ¼ eði=2Þc
R

BzðtÞ dtv:
ð8Þ

Substituting Eq. (8) into Eq. (5) we have the following

coupled first-order differential equation system:

_UU
_VV

" #
¼ i

2
cB1ðtÞ 0 e

�i
R

X dt

e
i
R

X dt
0

" #
	 U

V

� �
; ð9Þ

where Xðx; tÞ ¼ cBzðx; tÞ þ xðtÞ and xðtÞ ¼ _UUðtÞ. Now
this system can be rewritten as a single second-order

differential equation for U:

€UU þ iXðx; tÞ
 

�
_BB1ðtÞ
B1ðtÞ

!
_UU þ cB1ðtÞ

2

� 
2
UðtÞ ¼ 0: ð10Þ

We expand it further by replacing the functions Xðx; tÞ
and B1ðtÞ for the adiabatic pulses sech and tanh.

cB1ðtÞ ¼
a
ps
sech

t
s

� �
;

Xðx; tÞ ¼ bðxÞ
ps

tanh
t
s

� �
:

ð11Þ

It should be noticed that a frequency offset could be

added to Xðx; tÞ in the equation above as followed by
Hioe [9], giving solution based on elementary functions
for a full passage. This procedure was not adopted here

because the resultant hypergeometric solution for a half

passage could not be reduced to a simple form. Notice

that the spatial factor of Eq. (2) is represented by the

parameter bðxÞ in Eqs. (11), which is linear in x.

Therefore this parameter will be used for now on re-

garding results that depend on the position.
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The functions (11), along with the following variable
transformation of t, z ¼ ð1=2Þ½1þ tanhðt=sÞ� turn Eq.
(10) into the hypergeometric equation given below,

zð1� zÞ o
2

oz2
U þ ½c� ðaþ bþ 1Þz� o

oz
U � abU ¼ 0; ð12Þ

in which

a ¼ 1

2p
/ðxÞ½ þ ibðxÞ�;

b ¼ 1

2p
½ � /ðxÞ þ ibðxÞ� and /ðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � bðxÞ2

q
;

c ¼ 1
2
1

�
þ i bðxÞ

p

�
: ð13Þ

For the range 0 < z < 1, which corresponds to

�1 < t < 1, the solution in terms of the hypergeo-
metric function is

U ¼ a1F ða; b; c; zÞ
þ a2z1�cF ða� cþ 1; b� cþ 1; 2� c; zÞ: ð14Þ

At this point, Hioe [9] solved Eq. (12), forcing the initial

condition Mzðz ¼ 0Þ ¼ �1. For magnetic resonance

systems, the condition Mzðz ¼ 0Þ ¼ 1 is more conve-
nient, from which we end up with the following values

for the coefficients: a1 ¼ ein and a2 ¼ 0, where n is a
constant phase which will not affect the final value of the

magnetization, and will therefore be ignored. Thus,

U ¼ F ða; b; c; zÞ: ð15Þ
As stated in Section 1, our objective is to find solutions

for the magnetization, which can be expressed by ele-

mentary functions. Therefore it is possible to prove that

if we set the following values for / in Eq. (13),

/ ¼ ð2n� 1Þp; n ¼ 1; 2; . . . ð16Þ
the series representation of Eq. (15) is truncated in a

(n� 1)th degree polynomial in z [13],

U ¼ ð1� zÞc
� Xn�1

j¼0

ð1� nÞjðnÞj
ðcÞjj!

zj; ð17Þ

where ðnÞj � Cðnþ jÞ=CðnÞ is the Pochhammer symbol.
For the first values of n, Eq. (17) will yield less

complex analytical solutions if compared with the gen-

eralized case of Eq. (15). Let us see then how to obtain

the magnetization as a function of U.
The macroscopic magnetization will be proportional

to the average value of the spin angular momentum, as

follows:

Mx / Sx ¼ hWjSxjWi ¼ uv� þ u�v;

My / Sy ¼ hWjSy jWi ¼ iðuv� � u�vÞ;

Mz / Sz ¼ hWjSzjWi ¼ juj2 � jvj2:

ð18Þ

The very last of the equations above, along with the nor-
malization condition hWjWi ¼ juj2 þ jvj2 ¼ 1, give usMz:
Mz ¼ 2juj2 � 1 ¼ 2jU j2 � 1: ð19Þ
We are now able to find the My and Mx components

from the Bloch equations without relaxation (hence re-
duced to ordinary precessing rotor equations) which are

simpler to solve at the reference frame rotating with the

RF frequency xðtÞ:
_MMx ¼ Xðx; tÞMy ;

_MMy ¼ �Xðx; tÞMx þ cB1ðtÞMz;

_MMz ¼ �cB1ðtÞMy :

ð20Þ

Replacing Eq. (19) in Eqs. (20), we obtain the other two

components My and Mx,

My ¼ �
_MMz

cB1ðtÞ
and Mx ¼

cB1ðtÞMz � _MMy

Xðx; tÞ : ð21Þ

Therefore, given the value of U, we are able to obtain

the final value for the magnetization.
3. Discussion

It is important to note that the restriction imposed to

/ in Eq. (16) also restricts the values of x to those for
which the solutions are similar in form to that of Eq.

(17). In fact, we will have a finite number of solutions

within the interval jbj6 jaj. We found that these solu-
tions can be expressed as odd powers of hyperbolic se-

cants with order equal to 2n� 1. Let us examine how the
solutions come out for n ¼ 1 and n ¼ 2, respectively,

Mx b
�

¼�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2�p2

p
;t
�
¼�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p

a

� �2r
sech

t
s

� �
;

Mx b

�
¼�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2�ð3pÞ2

q
;t


¼� a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2�9p2

p

a2�8p2 sech
t
s

� �(

�4p
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2�9p2

p

a a2�8p2ð Þ sech
3 t

s

� �)
: ð22Þ

As we can see, in t ¼ 0 the transverse component Mx

shows opposite signs at equal distances to b ¼ 0, which
is in accordance to the expected magnetization after

qualitative analysis. The curves corresponding to Eq.

(22) are depicted in Fig. 3, in which we used a ¼ 4p and
s ¼ 1. The plot in Fig. 4 shows a good outline of the
results obtained. On top we see the magnetization curves

as a function of t, for distinct values of b, which admit
solutions given by Eq. (17). Plotted on the bottom we
see the magnetization Mx in t ¼ 0 for every b using the
general form of Eq. (15). The dashed lines indicate the

discrete positions for which we obtained solutions. For

this case, the values we used for plotting were a ¼ 10p
and s ¼ 1.
Yet, it is possible to enhance our analysis by ob-

serving the behavior of the magnetization Mz. A neces-



Fig. 3. Corresponding curves for the two first spatial discrete solutions

for the x component of magnetization, with pulse parameters a ¼ 4p
and s ¼ 1.

Fig. 4. (a) Transverse magnetization time-profiles, plotted to show the

discrete positions where the simpler solutions from Eq. (17) were ob-

tained. (b) Magnetization along x at time zero. This continuous curve

was obtained from the general expression Eq. (15). The dots are the

points also obtained with the simpler solution.

Fig. 5. Relation among z magnetization profile sharpness and x profile

inversion sharpness. The best possible sharpness for the Mx inversion

profile will be when de y component is zero. In this case the Mx profile

will be as steep as the Mz profile is narrow.
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sary condition for the maximum values of Mx ¼ �1 to
be reached, in positions excluding the nodal point, is

that Mz equals zero in this range. Therefore, one can

obtain Mz by substituting Eq. (15) into Eq. (19). Using

the following identities [13]:
F a; b;
aþ bþ 1

2
;
1

2

� 


¼
ffiffiffi
p

p
C

aþ bþ 1
2

� 
�
C

aþ 1
2

� 

C

bþ 1
2

� 
� �
;

C
1

2

�
þ iz



C
1

2

�
� iz



¼ p
coshðpzÞ ; ð23Þ

we get

Mzðt ¼ 0Þ ¼ cos
/
2

� 

sech

b
2

� 

: ð24Þ

Eq. (24) shows that the width of Mz is determined by

sechðb=2Þ in the range that / is real, i.e., jbj6 jaj.
Consequently, the maximum inversion sharpness is also

dictated by the sechðb=2Þ. Fig. 5 illustrates this argu-
ment. Therefore, following our notation, the width ofMz

is only a function of b. However, the b dependence on x

has two parameters. This can be seen by identifying in

the frequency pulse of Eq. (11) the components of Eq.
(2), b ¼ qx� p and f ðtÞ ¼ tanhðt=sÞ, which results in the
following relation for the widths:

Dx ¼ Db=psq: ð25Þ
Then, given a specific Db, the width Dx will be inversely
proportional to the pulse width s and gradient ampli-
tude q. For the range jbjP jaj, / turns into pure imag-
inary and Mz goes to one in the limit that jbj ! 1, as
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shown in Fig. 5. This tendency is not strange since for
large b the adiabatic condition is no longer satisfied.
It is interesting to notice that if we set a spatial de-

pendence on the RF amplitude a in such a way that /
holds constant, we obtain an exact result such as given

by Eq. (17), without any restrictions for x. Therefore,

with aðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/2 þ bðxÞ2

q
, for t ¼ 0 and / ¼ p, we have:

MxðxÞ ¼
�bðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þ bðxÞ2
q : ð26Þ

This magnetization has the same form of the one in

Fig. 2a. It is important to notice that such analysis could

be made with any other value of / as long as it satisfied
Eq. (16), whereas we chose / ¼ p merely for purpose of
simplification.
4. Conclusions

We presented in this work an analytical description

for the magnetization of samples exposed to a GMAX

methodology. Starting from the quantum description of
a non-interacting spin system, we found a solution in

terms of the hypergeometric function. Aiming to obtain

the clearest understanding of the magnetization behav-

ior, we analyzed the solutions at positions for which the

hypergeometric function reduces to polynomials. As a

matter of fact we believe that it simplified the description

of the magnetization. It was also possible to delineate

the maximum inversion sharpness of the x component
of magnetization from the behavior of its z component.

Finally we proposed an experiment, where a specific

spatial dependence in the RF amplitude modulation that

keeps / constant, produces a very simple solution for
the desired magnetization inversion profile. This would

allow a great deal of control and prediction for the

methodology.
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